Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542903

RESUMO

Shape memory and self-healing polymer nanocomposites have attracted considerable attention due to their modifiable properties and promising applications. The incorporation of nanomaterials (polypyrrole, carboxyl methyl cellulose, carbon nanotubes, titania nanotubes, graphene, graphene oxide, mesoporous silica) into these polymers has significantly enhanced their performance, opening up new avenues for diverse applications. The self-healing capability in polymer nanocomposites depends on several factors, including heat, quadruple hydrogen bonding, π-π stacking, Diels-Alder reactions, and metal-ligand coordination, which collectively govern the interactions within the composite materials. Among possible interactions, only quadruple hydrogen bonding between composite constituents has been shown to be effective in facilitating self-healing at approximately room temperature. Conversely, thermo-responsive self-healing and shape memory polymer nanocomposites require elevated temperatures to initiate the healing and recovery processes. Thermo-responsive (TRSMPs), light-actuated, magnetically actuated, and Electrically actuated Shape Memory Polymer Nanocomposite are discussed. This paper provides a comprehensive overview of the different types of interactions involved in SMP and SHP nanocomposites and examines their behavior at both room temperature and elevated temperature conditions, along with their biomedical applications. Among many applications of SMPs, special attention has been given to biomedical (drug delivery, orthodontics, tissue engineering, orthopedics, endovascular surgery), aerospace (hinges, space deployable structures, morphing aircrafts), textile (breathable fabrics, reinforced fabrics, self-healing electromagnetic interference shielding fabrics), sensor, electrical (triboelectric nanogenerators, information energy storage devices), electronic, paint and self-healing coating, and construction material (polymer cement composites) applications.

2.
Molecules ; 29(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38338454

RESUMO

In the presented study, a variety of hybrid and single nanomaterials of various origins were tested as novel platforms for horseradish peroxidase immobilization. A thorough characterization was performed to establish the suitability of the support materials for immobilization, as well as the activity and stability retention of the biocatalysts, which were analyzed and discussed. The physicochemical characterization of the obtained systems proved successful enzyme deposition on all the presented materials. The immobilization of horseradish peroxidase on all the tested supports occurred with an efficiency above 70%. However, for multi-walled carbon nanotubes and hybrids made of chitosan, magnetic nanoparticles, and selenium ions, it reached up to 90%. For these materials, the immobilization yield exceeded 80%, resulting in high amounts of immobilized enzymes. The produced system showed the same optimal pH and temperature conditions as free enzymes; however, over a wider range of conditions, the immobilized enzymes showed activity of over 50%. Finally, a reusability study and storage stability tests showed that horseradish peroxidase immobilized on a hybrid made of chitosan, magnetic nanoparticles, and selenium ions retained around 80% of its initial activity after 10 repeated catalytic cycles and after 20 days of storage. Of all the tested materials, the most favorable for immobilization was the above-mentioned chitosan-based hybrid material. The selenium additive present in the discussed material gives it supplementary properties that increase the immobilization yield of the enzyme and improve enzyme stability. The obtained results confirm the applicability of these nanomaterials as useful platforms for enzyme immobilization in the contemplation of the structural stability of an enzyme and the high catalytic activity of fabricated biocatalysts.


Assuntos
Quitosana , Nanotubos de Carbono , Selênio , Enzimas Imobilizadas/química , Peroxidase do Rábano Silvestre/química , Quitosana/química , Estabilidade Enzimática , Íons , Concentração de Íons de Hidrogênio
3.
Environ Res ; 241: 117579, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37944691

RESUMO

A wide array of organic compounds have been recognized as pollutants of high concern due to their controlled or uncontrolled presence in environmental matrices. The persistent prevalence of diverse organic pollutants, including pharmaceutical compounds, phenolic compounds, synthetic dyes, and other hazardous substances, necessitates robust measures for their practical and sustainable removal from water bodies. Several bioremediation and biodegradation methods have been invented and deployed, with a wide range of materials well-suited for diverse environments. Enzyme-linked carbon-based materials have been considered efficient biocatalytic platforms for the remediation of complex organic pollutants, mostly showing over 80% removal efficiency of micropollutants. The advantages of enzyme-linked carbon nanotubes (CNTs) in enzyme immobilization and improved catalytic potential may thus be advantageous for environmental research considering the current need for pollutant removal. This review outlines the perspective of current remediation approaches and highlights the advantageous features of enzyme-linked CNTs in the removal of pollutants, emphasizing their reusability and stability aspects. Furthermore, different applications of enzyme-linked CNTs in environmental research with concluding remarks and future outlooks have been highlighted. Enzyme-linked CNTs serve as a robust biocatalytic platform for the sustainability agenda with the aim of keeping the environment clean and safe from a variety of organic pollutants.


Assuntos
Poluentes Ambientais , Nanotubos de Carbono , Poluentes Ambientais/metabolismo , Biodegradação Ambiental , Catálise , Substâncias Perigosas
4.
Molecules ; 28(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37959700

RESUMO

Herein, we present a novel biosensor based on nature-inspired poly(caffeic acid) (PCA) grafted to magnetite (Fe3O4) nanoparticles with glucose oxidase (GOx) from Aspergillus niger via adsorption technique. The biomolecular corona was applied to the fabrication of a biosensor system with a screen-printed electrode (SPE). The obtained results indicated the operation of the system at a low potential (0.1 V). Then, amperometric measurements were performed to optimize conditions like various pH and temperatures. The SPE/Fe3O4@PCA-GOx biosensor presented a linear range from 0.05 mM to 25.0 mM, with a sensitivity of 1198.0 µA mM-1 cm-2 and a limit of detection of 5.23 µM, which was compared to other biosensors presented in the literature. The proposed system was selective towards various interferents (maltose, saccharose, fructose, L-cysteine, uric acid, dopamine and ascorbic acid) and shows high recovery in relation to tests on real samples, up to 10 months of work stability. Moreover, the Fe3O4@PCA-GOx biomolecular corona has been characterized using various techniques such as Fourier transform infrared spectroscopy (FTIR), high-resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and Bradford assay.


Assuntos
Técnicas Biossensoriais , Glucose , Glucose/química , Enzimas Imobilizadas/química , Ácidos Cafeicos , Técnicas Biossensoriais/métodos , Glucose Oxidase/química , Eletrodos , Técnicas Eletroquímicas
5.
Biomimetics (Basel) ; 8(7)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37999174

RESUMO

The structural biopolymer spongin in the form of a 3D scaffold resembles in shape and size numerous species of industrially useful marine keratosan demosponges. Due to the large-scale aquaculture of these sponges worldwide, it represents a unique renewable source of biological material, which has already been successfully applied in biomedicine and bioinspired materials science. In the present study, spongin from the demosponge Hippospongia communis was used as a microporous template for the development of a new 3D composite containing goethite [α-FeO(OH)]. For this purpose, an extreme biomimetic technique using iron powder, crystalline iodine, and fibrous spongin was applied under laboratory conditions for the first time. The product was characterized using SEM and digital light microscopy, infrared and Raman spectroscopy, XRD, thermogravimetry (TG/DTG), and confocal micro X-ray fluorescence spectroscopy (CMXRF). A potential application of the obtained goethite-spongin composite in the electrochemical sensing of dopamine (DA) in human urine samples was investigated, with satisfactory recoveries (96% to 116%) being obtained.

6.
Chem Mater ; 35(19): 7878-7903, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37840775

RESUMO

Since the discovery of deep eutectic solvents (DESs) in 2003, significant progress has been made in the field, specifically advancing aspects of their preparation and physicochemical characterization. Their low-cost and unique tailored properties are reasons for their growing importance as a sustainable medium for the resource-efficient processing and synthesis of advanced materials. In this paper, the significance of these designer solvents and their beneficial features, in particular with respect to biomimetic materials chemistry, is discussed. Finally, this article explores the unrealized potential and advantageous aspects of DESs, focusing on the development of biomineralization-inspired hybrid materials. It is anticipated that this article can stimulate new concepts and advances providing a reference for breaking down the multidisciplinary borders in the field of bioinspired materials chemistry, especially at the nexus of computation and experiment, and to develop a rigorous materials-by-design paradigm.

7.
Mar Drugs ; 21(9)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37755073

RESUMO

Marine sponges of the subclass Keratosa originated on our planet about 900 million years ago and represent evolutionarily ancient and hierarchically structured biological materials. One of them, proteinaceous spongin, is responsible for the formation of 3D structured fibrous skeletons and remains enigmatic with complex chemistry. The objective of this study was to investigate the interaction of spongin with iron ions in a marine environment due to biocorrosion, leading to the occurrence of lepidocrocite. For this purpose, a biomimetic approach for the development of a new lepidocrocite-containing 3D spongin scaffold under laboratory conditions at 24 °C using artificial seawater and iron is described for the first time. This method helps to obtain a new composite as "Iron-Spongin", which was characterized by infrared spectroscopy and thermogravimetry. Furthermore, sophisticated techniques such as X-ray fluorescence, microscope technique, and X-Ray diffraction were used to determine the structure. This research proposed a corresponding mechanism of lepidocrocite formation, which may be connected with the spongin amino acids functional groups. Moreover, the potential application of the biocomposite as an electrochemical dopamine sensor is proposed. The conducted research not only shows the mechanism or sensor properties of "Iron-spongin" but also opens the door to other applications of these multifunctional materials.


Assuntos
Ferro , Poríferos , Animais , Biomimética , Dopamina
8.
Int J Biol Macromol ; 253(Pt 3): 126709, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37696372

RESUMO

Magnetic biocatalysts combine magnetic properties with the catalytic activity of enzymes, achieving easy recovery and reuse in biotechnological processes. Lipases immobilized by magnetic nanoparticles dominate. This review covers an advanced bibliometric analysis and an overview of the area, elucidating research advances. Using WoS, 34,949 publications were analyzed and refined to 450. The prominent journals, countries, institutions, and authors that published the most were identified. The most cited articles showed research hotspots. The analysis of the themes and keywords identified five clusters and showed that the main field of research is associated with obtaining biofuels derived from different types of sustainable vegetable oils. The overview of magnetic biocatalysts showed that these materials are also employed in biosensors, photothermal therapy, environmental remediation, and medical applications. The industry shows a significant interest, with the number of patents increasing. Future studies should focus on immobilizing new lipases in unique materials with magnetic profiles, aiming to improve the efficiency for various biotechnological applications.


Assuntos
Enzimas Imobilizadas , Nanopartículas , Lipase , Magnetismo , Fenômenos Magnéticos
9.
RSC Adv ; 13(32): 21971-21981, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37483675

RESUMO

Tissue engineering is a burgeoning field focused on repairing damaged tissues through the combination of bodily cells with highly porous scaffold biomaterials, which serve as templates for tissue regeneration, thus facilitating the growth of new tissue. Carbon materials, constituting an emerging class of superior materials, are currently experiencing remarkable scientific and technological advancements. Consequently, the development of novel 3D carbon-based composite materials has become significant for biomedicine. There is an urgent need for the development of hybrids that will combine the unique bioactivity of ceramics with the performance of carbonaceous materials. Considering these requirements, herein, we propose a straightforward method of producing a 3D carbon-based scaffold that resembles the structural features of spongin, even on the nanometric level of their hierarchical organization. The modification of spongin with calcium phosphate was achieved in a deep eutectic solvent (choline chloride : urea, 1 : 2). The holistic characterization of the scaffolds confirms their remarkable structural features (i.e., porosity, connectivity), along with the biocompatibility of α-tricalcium phosphate (α-TCP), rendering them a promising candidate for stem cell-based tissue-engineering. Culturing human bone marrow mesenchymal stem cells (hMSC) on the surface of the biomimetic scaffold further verifies its growth-facilitating properties, promoting the differentiation of these cells in the osteogenesis direction. ALP activity was significantly higher in osteogenic medium compared to proliferation, indicating the differentiation of hMSC towards osteoblasts. However, no significant difference between C and C-αTCP in the same medium type was observed.

10.
Chemosphere ; 336: 139203, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37315851

RESUMO

Life on earth is dependent on clean water, which is crucial for survival. Water supplies are getting contaminated due to the growing human population and its associated industrialization, urbanization, and chemically improved agriculture. Currently, a large number of people struggle to find clean drinking water, a problem that is particularly serious in developing countries. To meet the enormous demand of clean water around the world, there is an urgent need of advanced technologies and materials that are affordable, easy to use, thermally efficient, portable, environmentally benign, and chemically durable. Physical, chemical and biological methods are used to eliminate insoluble materials and soluble pollutants from wastewater. In addition to cost, each treatment carries its limitations in terms of effectiveness, productivity, environmental effect, sludge generation, pre-treatment demands, operating difficulties, and the creation of potentially hazardous byproducts. To overcome the problems of traditional methods, porous polymers have distinguished themselves as practical and efficient materials for the treatment of wastewater because of their distinctive characteristics such as large surface area, chemical versatility, biodegradability, and biocompatibility. This study overviews improvement in manufacturing methods and the sustainable usage of porous polymers for wastewater treatment and explicitly discusses the efficiency of advanced porous polymeric materials for the removal of emerging pollutants viz. pesticides, dyes, and pharmaceuticals whereby adsorption and photocatalytic degradation are considered to be among the most promising methods for their effective removal. Porous polymers are considered excellent adsorbents for the mitigation of these pollutants as they are cost-effective and have greater porosities to facilitate penetration and adhesion of pollutants, thus enhance their adsorption functionality. Appropriately functionalized porous polymers can offer the potential to eliminate hazardous chemicals and making water useful for a variety of purposes thus, numerous types of porous polymers have been selected, discussed and compared especially in terms of their efficiencies against specific pollutants. The study also sheds light on numerous challenges faced by porous polymers in the removal of contaminants, their solutions and some associated toxicity issues.


Assuntos
Poluentes Ambientais , Praguicidas , Poluentes Químicos da Água , Purificação da Água , Humanos , Águas Residuárias , Porosidade , Adsorção , Corantes , Polímeros , Purificação da Água/métodos , Preparações Farmacêuticas , Poluentes Químicos da Água/análise
11.
Sci Rep ; 13(1): 10404, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37369694

RESUMO

CuO nanoparticles (NPs) were added to cement matrices in quantities of 0.25, 0.50 and 1.00 wt% to inhibit the growth of Gram-positive (Bacillus cereus, Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa, Escherichia coli) bacteria. It was shown that CuO NPs, in all tested concentrations, improved the antibacterial properties of the cement matrix. Nevertheless, the best mechanical, structural and durability properties were obtained for cement composites doped with CuO NPs at 0.25 wt%. Larger amounts of NPs caused a decrease in all parameters relative to the reference mortar, which may be the result of a slight change in the porosity of the composite microstructure. For 0.50 wt% CuO NPs, a slight increase in the volume of micropores in the cement matrix was observed, and an increased number of larger pores was confirmed by non-invasive computed tomography (CT). The reduction in the mechanical parameters of composites with 0.50 and 1.00 wt% CuO NPs may also be due to the slower hydration of the cement binder, as confirmed by changes in the heat of hydration for these configurations, or agglomeration of NPs, especially for the 1.00 wt% concentration, which was manifested in a decrease in the plasticity of the mortars.


Assuntos
Antibacterianos , Nanopartículas , Antibacterianos/farmacologia , Antibacterianos/química , Cobre/farmacologia , Cobre/química , Nanopartículas/química , Bactérias
12.
Bioresour Technol ; 381: 129144, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37172744

RESUMO

This study reports a biocatalytic system of immobilized laccase and 3D printed open-structure biopolymer scaffoldings. The scaffoldings were computer-designed and 3D printed using polylactide (PLA) filament. The immobilization of laccase onto the 3D printed PLA scaffolds were optimized with regard to pH, enzyme concentration, and immobilization time. Laccase immobilization resulted in a small reduction in reactivity (in terms of Michaelis constant and maximum reaction rate) but led to significant improvement in chemical and thermal stability. After 20 days of storage, the immobilized and free laccase showed 80% and 35% retention of the initial enzymatic activity, respectively. The immobilized laccase on 3D printed PLA scaffolds achieved 10% improvement in the removal of estrogens from real wastewater as compared to free laccase and showed the significant reusability potential. Results here are promising but also highlight the need for further study to improve enzymatic activity and reusability.


Assuntos
Enzimas Imobilizadas , Águas Residuárias , Estabilidade Enzimática , Enzimas Imobilizadas/metabolismo , Lacase/metabolismo , Poliésteres , Impressão Tridimensional , Concentração de Íons de Hidrogênio
13.
Int J Biol Macromol ; 242(Pt 3): 124968, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37217044

RESUMO

Lignin modifying enzymes (LMEs) have gained widespread recognition in depolymerization of lignin polymers by oxidative cleavage. LMEs are a robust class of biocatalysts that include lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), laccase (LAC), and dye-decolorizing peroxidase (DyP). Members of the LMEs family act on phenolic, non-phenolic substrates and have been widely researched for valorization of lignin, oxidative cleavage of xenobiotics and phenolics. LMEs implementation in the biotechnological and industrial sectors has sparked significant attention, although its potential future applications remain underexploited. To understand the mechanism of LMEs in sustainable pollution mitigation, several studies have been undertaken to assess the feasibility of LMEs in correlating to diverse pollutants for binding and intermolecular interactions at the molecular level. However, further investigation is required to fully comprehend the underlying mechanism. In this review we presented the key structural and functional features of LMEs, including the computational aspects, as well as the advanced applications in biotechnology and industrial research. Furthermore, concluding remarks and a look ahead, the use of LMEs coupled with computational framework, built upon artificial intelligence (AI) and machine learning (ML), has been emphasized as a recent milestone in environmental research.


Assuntos
Inteligência Artificial , Lignina , Lignina/química , Peroxidases/metabolismo , Biotecnologia , Lacase , Fenóis
14.
Adv Colloid Interface Sci ; 315: 102889, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37030261

RESUMO

The synergistic combination of current biotechnological and nanotechnological research has turned to multienzyme co-immobilization as a promising concept to design biocatalysis engineering. It has also intensified the development and deployment of multipurpose biocatalysts, for instance, multienzyme co-immobilized constructs, via biocatalysis/protein engineering to scale-up and fulfil the ever-increasing industrial demands. Considering the characteristic features of both the loaded multienzymes and nanostructure carriers, i.e., selectivity, specificity, stability, resistivity, induce activity, reaction efficacy, multi-usability, high catalytic turnover, optimal yield, ease in recovery, and cost-effectiveness, multienzyme-based green biocatalysts have become a powerful norm in biocatalysis/protein engineering sectors. In this context, the current state-of-the-art in enzyme engineering with a synergistic combination of nanotechnology, at large, and nanomaterials, in particular, are significantly contributing and providing robust tools to engineer and/or tailor enzymes to fulfil the growing catalytic and contemporary industrial needs. Considering the above critics and unique structural, physicochemical, and functional attributes, herein, we spotlight important aspects spanning across prospective nano-carriers for multienzyme co-immobilization. Further, this work comprehensively discuss the current advances in deploying multienzyme-based cascade reactions in numerous sectors, including environmental remediation and protection, drug delivery systems (DDS), biofuel cells development and energy production, bio-electroanalytical devices (biosensors), therapeutical, nutraceutical, cosmeceutical, and pharmaceutical oriented applications. In conclusion, the continuous developments in nano-assembling the multienzyme loaded co-immobilized nanostructure carriers would be a unique way that could act as a core of modern biotechnological research.


Assuntos
Enzimas Imobilizadas , Nanoestruturas , Enzimas Imobilizadas/química , Estudos Prospectivos , Biotecnologia , Nanoestruturas/química , Engenharia de Proteínas
15.
Chemosphere ; 330: 138633, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37030343

RESUMO

Rapid urbanization is increasing the world's energy demand, making it necessary to develop alternative energy sources. These growing energy needs can be met by the efficient energy conversion of biomass, which can be done by various means. The use of effective catalysts to transform different types of biomasses will be a paradigm change on the road to the worldwide goal of economic sustainability and environmental protection. The development of alternative energy from biomass is not easy, due to the uneven and complex components present in lignocellulose; accordingly, the majority of biomass is currently processed as waste. The problems may be overcome by the design of multifunctional catalysts, offering adequate control over product selectivity and substrate activation. Hence, this review describes recent developments involving various catalysts such as metallic oxides, supported metal or composite metal oxides, char-based and carbon-based substances, metal carbides and zeolites, with reference to the catalytic conversion of biomass including cellulose, hemicellulose, biomass tar, lignin and their derivative compounds into useful products, including bio-oil, gases, hydrocarbons, and fuels. The main aim is to provide an overview of the latest work on the use of catalysts for successful conversion of biomass. The review ends with conclusions and suggestions for future research, which will assist researchers in utilizing these catalysts for the safe conversion of biomass into valuable chemicals and other products.


Assuntos
Biocombustíveis , Lignina , Biomassa , Lignina/química , Óxidos/química , Catálise
16.
Chemosphere ; 329: 138552, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37003438

RESUMO

Persistent contaminants in wastewater effluent pose a significant threat to aquatic life and are one of the most significant environmental concerns of our time. Although there are a variety of traditional methods available in wastewater treatment, including adsorption, coagulation, flocculation, ion exchange, membrane filtration, co-precipitation and solvent extraction, none of these have been found to be significantly cost-effective in removing toxic pollutants from the water environment. The upfront costs of these treatment methods are extremely high, and they require the use of harmful synthetic chemicals. For this reason, the development of new technologies for the treatment and recycling of wastewater is an absolute necessity. Our way of life can be made more sustainable by the synthesis of adsorbents based on biomass, making the process less harmful to the environment. Biopolymers offer a sustainable alternative to synthetic polymers, which are manufactured by joining monomer units through covalent bonding. This review presents a detailed classification of biopolymers such as pectin, alginate, chitosan, lignin, cellulose, chitin, carrageen, certain proteins, and other microbial biomass compounds and composites, with a focus on their sources, methods of synthesis, and prospective applications in wastewater treatment. A concise summary of the extensive body of knowledge on the fate of biopolymers after adsorption is also provided. Finally, consideration is given to open questions about future developments leading to environmentally friendly and economically beneficial applications of biopolymers.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Biopolímeros/química , Celulose/química , Quitina , Água , Poluentes Químicos da Água/química , Adsorção
17.
Environ Res ; 229: 115861, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37062477

RESUMO

Although rapid industrialization has made life easier for humans, several associated issues are emerging and harming the environment. Wastewater is regarded as one of the key problems of the 21st century due to its massive production every year and requires immediate attention from all stakeholders to protect the environment. Since the introduction of nanotechnology, bismuth-based nanomaterials have been used in variety of applications. Various techniques, such as hydrothermal, solvo-thermal and biosynthesis, have been reported for synthesizing these materials, etc. Among these, biosynthesis is eco-friendly, cost-effective, and less toxic than conventional chemical methods. The prime focuses of this review are to elaborate biosynthesis of bismuth-based nanomaterials via bio-synthetic agents such as plant, bacteria and fungi and their application in wastewater treatment as anti-pathogen/photocatalyst for pollutant degradation. Besides this, future perspectives have been presented for the upcoming research in this field, along with concluding remarks.


Assuntos
Poluentes Ambientais , Nanoestruturas , Humanos , Águas Residuárias , Bismuto , Nanotecnologia/métodos
18.
Int J Biol Macromol ; 237: 123968, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36906204

RESUMO

Nanobiocatalysts, in which enzyme molecules are integrated into/onto multifunctional materials, such as metal-organic frameworks (MOFs), have been fascinating and appeared as a new interface of nanobiocatalysis with multi-oriented applications. Among various nano-support matrices, functionalized MOFs with magnetic attributes have gained supreme interest as versatile nano-biocatalytic systems for organic bio-transformations. From the design (fabrication) to deployment (application), magnetic MOFs have manifested notable efficacy in manipulating the enzyme microenvironment for robust biocatalysis and thus assure requisite applications in several areas of enzyme engineering at large and nano-biocatalytic transformations, in particular. Magnetic MOFs-linked enzyme-based nano-biocatalytic systems offer chemo-regio- and stereo-selectivities, specificities, and resistivities under fine-tuned enzyme microenvironments. Considering the current sustainable bioprocesses demands and green chemistry needs, we reviewed synthesis chemistry and application prospects of magnetic MOFs-immobilized enzyme-based nano-biocatalytic systems for exploitability in different industrial and biotechnological sectors. More specifically, following a thorough introductory background, the first half of the review discusses various approaches to effectively developed magnetic MOFs. The second half mainly focuses on MOFs-assisted biocatalytic transformation applications, including biodegradation of phenolic compounds, removal of endocrine disrupting compounds, dye decolorization, green biosynthesis of sweeteners, biodiesel production, detection of herbicides and screening of ligands and inhibitors.


Assuntos
Enzimas Imobilizadas , Estruturas Metalorgânicas , Enzimas Imobilizadas/química , Biocatálise , Estruturas Metalorgânicas/química , Biotecnologia , Fenômenos Magnéticos
19.
Comput Struct Biotechnol J ; 21: 1593-1597, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874162

RESUMO

Due to the growing importance of synthesizing active pharmaceutical ingredients (APIs) in enantiomerically pure form, new methods of asymmetric synthesis are being sought. Biocatalysis is a promising technique that can lead to enantiomerically pure products. In this study, lipase from Pseudomonas fluorescens, immobilized on modified silica nanoparticles, was used for the kinetic resolution (via transesterification) of a racemic mixture of 3-hydroxy-3-phenylpropanonitrile (3H3P), where the obtaining of a pure (S)-enantiomer of 3H3P is a crucial step in the fluoxetine synthesis pathway. For additional stabilization of the enzyme and enhanced process efficiency, ionic liquids (ILs) were used. It was found that the most suitable IL was [BMIM]Cl; a process efficiency of 97.4 % and an enantiomeric excess (ee%) of 79.5 % were obtained when 1 % (w/v) of that IL in hexane was applied and the process was catalyzed by lipase immobilized on amine-modified silica.

20.
Molecules ; 28(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36903248

RESUMO

γ-Alumina with incorporated metal oxide species (including Fe, Cu, Zn, Bi, and Ga) was synthesized by liquid-assisted grinding-mechanochemical synthesis, applying boehmite as the alumina precursor and suitable metal salts. Various contents of metal elements (5 wt.%, 10 wt.%, and 20 wt.%) were used to tune the composition of the resulting hybrid materials. The different milling time was tested to find the most suitable procedure that allowed the preparation of porous alumina incorporated with selected metal oxide species. The block copolymer, Pluronic P123, was used as a pore-generating agent. Commercial γ-alumina (SBET = 96 m2·g-1), and the sample fabricated after two hours of initial grinding of boehmite (SBET = 266 m2·g-1), were used as references. Analysis of another sample of γ-alumina prepared within 3 h of one-pot milling revealed a higher surface area (SBET = 320 m2·g-1) that did not increase with a further increase in the milling time. So, three hours of grinding time were set as optimal for this material. The synthesized samples were characterized by low-temperature N2 sorption, TGA/DTG, XRD, TEM, EDX, elemental mapping, and XRF techniques. The higher loading of metal oxide into the alumina structure was confirmed by the higher intensity of the XRF peaks. Samples synthesized with the lowest metal oxide content (5 wt.%) were tested for selective catalytic reduction of NO with NH3 (NH3-SCR). Among all tested samples, besides pristine Al2O3 and alumina incorporated with gallium oxide, the increase in reaction temperature accelerated the NO conversion. The highest NO conversion rate was observed for Fe2O3-incorporated alumina (70%) at 450 °C and CuO-incorporated alumina (71%) at 300 °C. The CO2 capture was also studied for synthesized samples and the sample of alumina with incorporated Bi2O3 (10 wt.%) gave the best result (1.16 mmol·g-1) at 25 °C, while alumina alone could adsorb only 0.85 mmol·g-1 of CO2. Furthermore, the synthesized samples were tested for antimicrobial properties and found to be quite active against Gram-negative bacteria, P. aeruginosa (PA). The measured Minimum Inhibitory Concentration (MIC) values for the alumina samples with incorporated Fe, Cu, and Bi oxide (10 wt.%) were found to be 4 µg·mL-1, while 8 µg·mL-1 was obtained for pure alumina.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...